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1. Introduction 

Rapid and robust scene understanding is a critically important goal for the 
development of Army autonomous intelligent systems.1 For outdoor natural scenes, 
autonomous intelligent systems will need to quickly discern the depth of view, 
navigability, exposure or concealment (as it relates to object searching), and 
transience, that is, the rate at which elements of the scene or its environment are 
changing in space and time.2,3 In this regard, saliency estimation has been helpful 
to computationally identify elements in a scene that immediately capture the visual 
attention of an observer.4,5 Several recent papers have discussed concepts 
associated with visual saliency to enhance automated navigation and scene 
exploration.6–8 Note, however, that the most active or salient object(s) in a scene, 
by this definition,4,5,9 may not represent the most important or meaningful feature(s) 
of the scene in the context of the Army mission.10 In other words, visual saliency 
also can be used to highlight key image cues that relate to Army mission activities.10 
For example, an automated vision system may readily detect changes in the ground 
surface as a new or different object in the field of view; however, recognizing the 
physical characteristics of the new surface (e.g., shallow or deep water, thick, thin, 
or melting ice, freezing rain, snow, mud, quicksand, and so on) and observing any 
changes in the context of the image may be critically important.10–12 Characterizing 
interactions between objects and the environment also can contribute to physical 
scene understanding.13–16 

Furthermore, knowledge of how time and space changing environmental conditions 
cause changes in the context of images is necessary for scene understanding.10–12 
Here, context means more than the typically referenced attributes, content, or 
composition of an outdoor scene.17–19 For Army applications, scene understanding 
needs to be viewed in the context of providing optimal value to the Army mission. 
Then, for example, helpful image cues that relate to mission activities may include 
time of day, current and future weather conditions, visibility, terrain, and scene 
location. For instance, changing weather elements on the battlefield can alter terrain 
features and trafficability; low visibility can impede reconnaissance and target 
acquisition or alternately conceal friendly forces maneuvers and activities; and 
wind speed and direction can favor upwind forces in nuclear, biological, and 
chemical attacks or decrease the effectiveness of downwind forces due blowing 
dust, smoke, sand, rain, sleet, or snow.20–25 In fact, any image cue that can 
potentially help the mission should not be overlooked, since it will aid scene 
understanding in the context of the Army mission. Consequently, due to bandwidth 
and/or operations constraints, there will be a need for metrics to prioritize image 
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cuing that relate to mission activities. Thus, our mission driven scene understanding 
approach is designed to optimize mission success. 

Many of the current methods for scene understanding, like those that generate 
image descriptions via automated semantic labeling26 or visual scene 
classification,27 are only beginning to address changing environmental conditions 
(e.g., with regard to identifying changes in terrain characteristics to enhance 
autonomous navigation processes).28 Yet, considering context changes (e.g., due to 
a changing environment) can pose serious challenges for computer vision 
processes, such as those associated with place recognition, navigation, road/terrain 
detection, and scene exploration.29–33 This is because rain, snow, and fog weather 
events, as well as smoke, haze, or other changes in lighting and visibility can 
modify saliency and context of an outdoor scene, obscure features, and significantly 
degrade object recognition.34–37 Naturally, scene-depicted environmental 
conditions can vary with time of day, season, and location.38 

In this report, we outline progress toward implementing our mission driven scene 
understanding approach to advance the value of Army autonomous intelligent 
systems and support the Army mission in complex and changing battlefield 
environments. We describe the proof-of-principle installation, setup, and testing of 
a convolutional neural network (CNN) program developed in Python and all its 
required software dependencies.39–42 Here, we suggest that the CNN could be tested 
initially with simple single-object images and later on with more–complicated 
scenes, such as those illustrating changes in illumination, vegetation, terrain, and 
visibility. 

2. Prerequisite Software Installation 

In this section, we outline the prerequisite software installations to implement the 
Theano program code39,40 on a Windows 10 notebook computer. Here, Theano is a 
Python library that facilitates the efficient evaluation of mathematical expressions 
involving multidimensional arrays. Alternately, an online overview for installing 
Theano on Windows can be found at https: // deeplearning.net/software/theano/ 
install_windows.html#install-windows . 

2.1 GIT for Windows 

To access the GitHub software repository, download the 64-bit version of GIT from 
https:  // github.com/git-for-windows/git/releases/tag/v2.7.1.windows.2 and extract 
the files into the folder C:\SciSoft\Git. 
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2.2 Visual Studio Community 2013 

To access a C++ integrated development environment with 64-bit compilers, 
download Visual Studio Community 2013 from https: // www visualstudio.com/en-
us/news/vs2013-community-vs.aspx. Installation and setup for this software is self-
explanatory, although one does need to add the following 3 folders to the path: 

1. C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64 

2. C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib\amd64 

3. C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\include 

2.3 Windows Software Development Kit for Windows 10 

In addition to Visual Studio 12.0, download the Windows software development 
kit for Windows 10 from https: // dev.windows.com/en-us/downloads/windows-10-
sdk and extract the files into the folder C:\Program Files (x86)\Microsoft Visual 
Studio 12.0\VSSDK. The VSSDK folder should also be added to the path. 

2.4 CUDA v7.5 

To provide a development environment for C++ programs implementing graphics 
processing unit (GPU)-accelerated applications, download CUDA v7.5 from https: 
// developer.nvidia.com/cuda-toolkit. This software installation will require that a 
supported version Microsoft Visual Studio be found on the computer. If not 
completed automatically, the path can be updated to include the following 2 folders: 

1. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\ 
libnvvp 

2. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin 

2.5 TDM-GCC 

The Theano code compiler requires TDM-GCC installation for either 32- or 64-bit 
platforms. Therefore, one needs to download the 64-bit version TDM-GCC 
software from http: // tdm-gcc.tdragon.net/ and extract the files into the folder 
C:\SciSoft\TDM-GCC-64. 

2.6 Scientific Python v2.7.9.4 

To provide the necessary Python components for both Theano39,40 and the CNN 
AlexNet41,42 and for all of their programs’ software dependencies, such as numpy, 
hickle, pycuda, pylearn2, and zeromq, download and install the 64-bit version 
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Python v2.7.9.4 from https: // sourceforge.net/projects/winpython/files/ 
WinPython_2.7/2.7.9.4/ and extract the files into the folder C:\SciSoft\WinPython-
64bit-2.7.9.4. 

3. Installing Theano V0.8.0 

To provide the mathematical framework within which the CNN AlexNet compiles, 
download the most current 64-bit version of Theano (v0.8.0) from https: // 
github.com/Theano/Theano and extract the files into the folder 
C:\SciSoft\Git\theano. Alternately, one can download and install the Theano files 
from a command window by typing the following at the prompt: 

• C:\SciSoft\git> git clone https: // github.com/Theano/Theano.git 

3.1 Configuration of Paths 

To configure the system path for Python and Visual Studio, save following shell 
script as C:\SciSoft\env.bat: 

REM configuration of paths 
set VSFORPYTHON="C:\Program Files (x86)\Microsoft Visual Studio 
12.0"  
set SCISOFT=%~dp0 
REM add tdm gcc stuff 
set PATH=%SCISOFT%TDM-GCC-64\bin;%SCISOFT%TDM-GCC-64\x86_64-w64-
mingw32\bin;%PATH% 
REM add winpython stuff 
CALL %SCISOFT%WinPython-64bit-2.7.9.4\scripts\env.bat  
REM configure path for msvc compilers 
CALL %VSFORPYTHON%\vcvarsall.bat amd64  
REM return a shell 
cmd.exe /k 
 

Note here that the file vcvarsall.bat, which is called within the env.bat shell script, 
should contain the following path information: 
:amd64 
echo Setting environment for using Microsoft Visual Studio 2013 
x64 tools. 
set VCINSTALLDIR=%~dp0VC\ 
REM set WindowsSdkDir=%~dp0WinSDK\  
set WindowsSdkDir=%~dp0VSSDK\ 
if not exist "%VCINSTALLDIR%bin\amd64\cl.exe" goto missing 
set PATH=%VCINSTALLDIR%Bin\amd64;%WindowsSdkDir%VisualStudioInteg 
ration\Tools\Bin;%PATH% 
set INCLUDE=%VCINSTALLDIR%Include;%WindowsSdkDir%VisualStudioInte 
gration\Common\Inc;%INCLUDE%  
set LIB=%VCINSTALLDIR%Lib\amd64;%WindowsSdkDir%VisualStudioIntegr 
ation\Common\Lib\x64;%LIB% 
set LIBPATH=%VCINSTALLDIR%Lib\amd64;%WindowsSdkDir%VisualStudio 
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Integration\Common\Lib\x64;%LIBPATH%  
goto :eof 

3.2 Test the Configuration of Paths 

To test the path configuration, open the Python shell in a command window by 
typing C:\SciSoft\env.bat and then verify that the following programs are found 
by typing these lines at the prompt: 

• C:\SciSoft> where gcc 

• C:\SciSoft> where gendef 

• C:\SciSoft> where cl 

• C:\SciSoft> where nvcc 

3.3 Link Library for GCC 

To create a link library for GCC, open the Python shell in a command window by 
typing C:\SciSoft\env.bat and then type the following at the command window 
prompt: 

• C:\SciSoft> gendef WinPython-64bit-2.7.9.4\python-2.7.9.amd64\ 
python27.dll 

• C:\SciSoft> dlltool -dllname python27.dll -def python27.def -output-lib 
WinPython-64bit-2.7.9.4\python- 2.7.9.amd64\libs\libpython27.a 

3.4 Setup/Install Theano 

Finally, to set up and install Theano, open the Python shell in a command window 
by typing C:\SciSoft\env.bat and then type the following at the prompt: 

• C:\SciSoft\Git\Theano> python setup.py develop 

3.5 Test Theano: CPU 

To test whether Theano works and is able to compile code for central processing 
unit (CPU) execution, create the following test file (e.g., filename = test.py):  
import numpy as np 
import time  
import theano 
A = np.random.rand(1000,10000).astype(theano.config.floatX)  
B = np.random.rand(10000,1000).astype(theano.config.floatX) 
np_start = time.time() 
AB = A.dot(B) 
np_end = time.time() 
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X,Y = theano.tensor.matrices(’XY’)  
mf = theano.function([X,Y],X.dot(Y))  
t_start = time.time() 
tAB = mf(A,B) 
t_end = time.time() 
print("NP time: %f[s], theano time: %f[s] %(np_end-np_start, 
t_end-t_start))  

 
Then open the Python shell in a command window and type the following at the 
prompt: 

• C:\SciSoft\Git\Theano> python test.py 

The following is the example result: 
NP time: 1.480863[s], theano time: 1.475381[s]  
 

3.6 Test Theano: GPU 

To test whether Theano works and is able to compile code for GPU execution, 
create the file .theanorc.txt in C:\SciSoft\WinPython-64bit-2.7.9.4\settings as 
follows:  
[global]  
device = gpu 
REM device = cpu  
floatX = float32  
[nvcc] 
flags=-LC:\SciSoft\WinPython-64bit-2.7.9.4\python\2.7.9.amd64\ 
libs  
compiler_bindir=C:\Program Files (x86)\Microsoft Visual Studio 
12.0\VC\bin 
 
Then, rerun the test.py file shown in Section 3.5. 

3.7 Additional Theano Test 

As an additional test of the Theano code, open the Python shell in a command 
window and type the following at the prompt: 

• C:\SciSoft\Git\Theano>python C:\SciSoft\Git\Theano\bin\theano-
nose -batch=3000 
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The following is the example result: 
#################### 
# COLLECTING TESTS # 
################################### 
# RUNNING TESTS IN BATCHES OF 3000 # 
################################### 
100% done in 604.919s (failed: 0) 
#################### 
# ALL TESTS PASSED # 
#################### 

4. AlexNet CNN Implementation with Theano 

In this section, we outline all of the prerequisite software installations to implement 
the AlexNet CNN

42 program code within Theano on a Windows 10 notebook 
computer. Alternately, an online overview of configuring the paths for the AlexNet 
CNN,

42 preprocessing image data, and running the Python code can be found at 
https: // github.com/uoguelph-mlrg/theano_alexnet. 

4.1 PIP 

An alternate way to install the Python site packages (e.g., pycuda) is to download 
get-pip.py from https: // pip.pypa.io/en/stable/installing/, which can be extracted 
into the folder C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\Scripts. 
Then to install PIP, open the Python shell C:\SciSoft\env.bat in a command 
window and type the following: 

• C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\ 
Scripts> python get-pip.py 

4.2 Pycuda 

To install this dependent Python site package, download the file “pycuda-
2015.1.3+cuda7518-cp27-none-win_amd64.whl” from http: // www lfd.uci.edu/ 
~gohlke/pythonlibs/#pycuda and copy it to the folder C:\SciSoft\WinPython-64bit-
2.7.9.4\settings\pipwin\. Then to install pycuda, open the Python shell in 
C:\SciSoft\env.bat and then at the command prompt type the following: 

• C:\SciSoft>pip install C:\SciSoft\WinPython-64bit-2.7.9.4\settings\ 
pipwin\pycuda-2015.1.3+cuda7518-cp27- none-win_amd64.whl 
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It is necessary to install several required C++ libraries prior to completing the steps 
for installing pycuda, as outlined above. Here, one needs to download 
boost_1_59_0-msvc-12.0-64.exe from https: // sourceforge.net/projects/boost/files/ 
boost-binaries/ and then double click on the file to install boost in the folder 
C:\local\boost_1_59_0. 

4.3 Hickle 

To install this dependent Python site package, download hickle from https: // 
github.com/telegraphic/hickle and then open the Python shell in 
C:\SciSoft\env.bat and then type the following at the command window prompt: 

• C:\SciSoft> cd C:\SciSoft\WinPython-64bit-2.7.9.4\python-
2.7.9.amd64\Lib\site-packages\hickle 

• C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\Lib\site-
packages\hickle> python setup.py install 

4.4 Pylearn2 

To install this dependent Python site package, download pylearn2 from https: // 
github.com/lisa-lab/pylearn2 and then open the Python shell in C:\SciSoft\env.bat 
and then type the following at the command window prompt: 

• C:\SciSoft> cd C:\SciSoft\WinPython-64bit-2.7.9.4\python-
2.7.9.amd64\Lib\site-packages\pylearn2 

• C:\SciSoft\WinPython-64bit-2.7.9.4\python-2.7.9.amd64\Lib\site-
packages\pylearn2> python setup.py install 

4.5 Theano-Alexnet 

Download Theano-Alexnet from https: // github.com/uoguelph-mlrg/ 
theano_alexnet and extract files into the folder: C:\SciSoft\Git\theano_alexnet\. 

4.6 Prepare and Preprocess ImageNet Data 

To prepare and preprocess ImageNet data,
43 register and download the ImageNet 

Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) image data .tar 
files and the 2014 development kit from http: // www image-net.org into the 
following 3 folders: 

• C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ilsvrc_2014\ILSVRC
2012_DET_train 
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• C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ilsvrc_2014\ILSVRC
2012_DET_val 

• C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ilsvrc_2014\ILSVRC
2014_devkit 

After downloading the image data, open the Python shell C:\SciSoft\env.bat and 
in the command window run the script C:\SciSoft\Git\theano_alexnet\ 
preprocessing\generate_data.sh, which will call 3 Python scripts. This program 
runs for about 1–2 days. Alternately, for a short trial of the AlexNet code, run the 
script C:\SciSoft\Git\theano_alexnet\preprocessing\generate_toy_data.sh, 
which takes about 10 min. 

4.6.1 Set Configurations Paths for AlexNet 

Prior to preprocessing the image data, modify the path information in the file 
C:\SciSoft\Git\theano_alexnet\preprocessing\path.yaml as follows and be sure to 
make similar path annotations in the file C:\SciSoft\Git\theano_alexnet\ 
spec_1gpu.yaml: 
# dir that contains folders like n01440764, n01443537, ... 
train_img_dir:’C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ 
ilsvrc_2014\ILSVRC2012_DET_train\’ 
# dir that contains ILSVRC2012_val_00000001~50000.JPEG 
val_img_dir:’C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ 
ilsvrc_2014\ILSVRC2012_DET_val\’ 
# dir to store all the preprocessed files  
tar_root_dir:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12’  
# dir to store training batches  
tar_train_dir:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\ 
train_hkl’  
# dir to store validation batches  
tar_val_dir:’C:\SciSoft\Git\\theano_alexnet\scratch\ilsvrc12\ 
val_hkl’  
# dir to store img_mean.npy, shuffled_train_filenames.npy, 
train.txt, val.txt 
misc_dir:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\misc’ 
meta_clsloc_mat:’C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ 
ilsvrc_2014\ ILSVRC2014_devkit\data\meta_clsloc.mat’ 
val_label_file:’C:\SciSoft\Git\theano_alexnet\mnt\data\datasets\ 
ilsvrc_2014\ILSVRC2014_devkit\data\ILSVRC2014_clsloc_validation_ 
ground_truth.txt’ 
# training labels 
valtxt_filename:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\ 
misc\val.txt’  
# validation labels 
traintxt_filename:’C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\
misc\train.txt’ 
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In addition, in the file C:\SciSoft\Git\theano_alexnet\make_labels.py, add “import 
os.path” at the top of the file and replaced the line containing “filename = 
filename.split(’/’)[1]” with “filename = os.path.basename(filename)”. Also replace 
the line containing “key = train_filename.split(’/’)[-1]” with “key = 
os.path.basename(train_filename)”. These corrections are necessary because the 
Python .split delimiter “/” is not compatible with MS Windows path notations. 

4.6.2 Preprocessed ImageNet Data for Theano-AlexNet 

The 7 folders generated by running the shorter (~10 min) Python script (i.e., 
generate_toy_data.sh) to preprocess a subset of the ImageNet data for Theano-
AlexNet are shown in Table 1. 

Table 1 Folders generated in C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\  

02/24/2016 02:43 PM <DIR> labels 
02/23/2016 02:59 PM <DIR> misc 
02/23/2016 05:25 PM <DIR> models 
02/23/2016 02:58 PM <DIR> train_hkl_b256_b_128 
02/23/2016 02:58 PM <DIR> train_hkl_b256_b_256 
02/23/2016 02:59 PM <DIR> val_hkl_b256_b_128 
02/23/2016 02:59 PM <DIR> val_hkl_b256_b_256 

 

In the folder C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\labels, the following 6 
files are generated (Table 2). 

Table 2 Files generated in C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\labels 

02/24/2016 
02/24/2016 
02/24/2016 
02/24/2016 
02/24/2016 
02/24/2016 

02:43 PM 
02:43 PM 
02:43 PM 
02:39 PM 
02:43 PM 
02:43 PM 

5,124,748 
2,562,128 
2,562,128 

200,080 
99,920 
99,920 

train_labels.npy 
train_labels_0.npy 
train_labels_1.npy 
val_labels.npy 
val_labels_0.npy 
val_labels_1.npy 

 
In the folder C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\misc, the following 4 
files are generated (Table 3). 

Table 3 Files generated in C:\SciSoft\Git\theano_alexnet\scratch\ilsvrc12\misc 

02/24/2016 
02/24/2016 
02/24/2016 
02/24/2016 

02:38 PM 
02:54 PM 
02:39 PM 
02:39 PM 

1,572,960 
142,209,617 
45,110,600 

1,694,500 

img_mean.npy 
shuffled_train_filenames.npy 
train.txt 
val.txt 

 

In the folders train_hkl_b256_b_256 and val_hkl_b256_b_256, 10 files  
(size = 50,333,799 each) are generated, which are labeled 0000.hkl through 
0009.hkl. Note that each of these files contain 256 color images of size 256×256, 
hence 2,560 image files for training and validation are used for the short trial 
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training of the Theano-AlexNet code. Figure 1 shows a few example images from 
this subset of the ILSVRC2012 data set, which illustrate time- and space-varying 
environmental conditions, such as variations in illumination, vegetation, terrain, 
and visibility. 
 

 
 

Fig. 1 A few example images from a subset of the ImageNet ILSVRC201243 data used for 
the short trial training of the Theano-AlexNet code that illustrate time- and space-varying 
environmental conditions in outdoor scenes, such as variations in illumination, vegetation, 
terrain, and visibility 

4.7 Train Theano-AlexNet 

Theano-AlexNet was tested using the file C:\SciSoft\Git\theano_alexnet\train.py as 
follows: 

• C:\SciSoft\Git\theano_alexnet> python  
train.py THEANO_FLAGS=mode=FAST_RUN, floatX=float32. 

In our first trial, Theano-AlexNet initialized properly (Table 4) and then executed 
20,000 iterations in about 66 h, where upon the statement “Optimization complete” 
was returned to the command window (Table 5). Model output files from the last 
iteration were generated in the folder C:\SciSoft\Git\theano_alexnet\ 
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scratch\ilsvrc12, which contained 11 weights and biases files, respectively, as well 
as 22 momentum files, all of which define the computations of the neural network. 

Table 4 Building the model 

 

Table 5 CNN training and validation results: 20,000 iterations 

 

training @ iter = 20 
training cost: 6.901418685916 
training error rate: 1.0 
validation loss: 6.907903 
validation error: 99.921875 % 
training @ iter = 40  
training cost: 6.89094781876 
training error rate: 1.0 
validation loss: 6.907701 
validation error: 99.921875 % 
training @ iter = 60  
training cost: 6.88030338287 
training error rate: 0.99609375 
validation loss: 6.907765 
validation error: 99.726562 % 
training @ iter = 80  
training cost: 6.87519598 
training error rate: 1.0 
validation loss: 6.908174 
validation error: 99.882812 % 
... 

training @ iter = 19920 
training cost: 4.94013977051 
training error rate: 0.95703125 
validation loss: 8.612438 
validation error: 99.6875 % 
training @ iter = 19940 
training cost: 5.020860672 
training error rate: 0.91015625 
validation loss: 8.665205 
validation error: 99.765625 % 
training @ iter = 19960 
training cost: 4.81143093109 
training error rate: 0.9375 
validation loss: 8.659591 
validation error: 99.804688 % 
training @ iter = 19980 
training cost: 4.9219660759 
training error rate: 0.93359375 
validation loss: 8.645909 
validation error: 99.84375 % 
Optimization complete 

 

We found that with greater numbers of iterations the training cost and training error 
rates began to decrease. In fact, when we continued this model run, executing the 
code from 20,000 to 60,000 iterations over an additional 138 h, we found that the 
training cost at iteration = 60,000 was 0.0818 and the training error rate was 0.0273, 
which means that the CNN had “learned” to assign the correct class label to an 
image, when the image is taken from the training data set. However, the validation 
loss increased significantly (i.e., from 6.9079 to 26.7026) and the validation errors 
after 60,000 iterations remained high (i.e., 99.6484%), which indicates that the 
CNN is not assigning the correct class label to an image not previously seen, 

conv (cudnn) layer with shape_in: (3, 227, 227, 256) 
conv (cudnn) layer with shape_in: (96, 27, 27, 256) 
conv (cudnn) layer with shape_in: (256, 13, 13, 256) 
conv (cudnn) layer with shape_in: (384, 13, 13, 256) 
conv (cudnn) layer with shape_in: (384, 13, 13, 256) 
fc layer with num_in: 9216 num_out: 4096 dropout 
layer with P_drop: 0.5 
fc layer with num_in: 4096 num_out: 4096 
dropout layer with P_drop: 0.5 
softmax layer with num_in: 4096 num_out: 1000 
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possibly due to overfitting.41 For comparison, the validation error rates achieved by 
Ding et al.42 after they ran the Theano-AlexNet model using 2 GPUs for 65 cycles 
were 42.6% for the top-1 class label and 19.9% for the top-5 class label. Thus, we 
recommend additional trials and analysis with increased numbers of training 
images in order to achieve lower validation error rates using the CNN so that we 
can better determine the feasibility of using the CNN to augment our approach, 
initially with simple single-object images and later on with more complicated 
scenes, such as those with time- and space-varying environmental conditions. As 
an example, Theano-AlexNet could be trained on the larger ImageNet43 data set 
containing approximately million images, as described previously, even though this 
would require additional file storage (~500 Gb) for the input and output files and 
additional GPUs to achieve better computationally efficiency to implement the 
program code. 

5. Summary and Conclusions 

In this report, we outlined progress toward implementing our mission driven scene 
understanding approach to advance the value of Army autonomous intelligent 
systems. We described the proof-of-principle installation, setup, and testing of a 
convolutional neural network (CNN) program developed in Python and all of its 
required software dependencies. While we found that the CNN was able to 
determine the correct class labels for images taken from the training data set, the 
validation process did not appear to provide optimal results for images not 
previously seen. Thus, we recommend that additional trials and analysis be 
performed to better determine the feasibility of using the CNN to augment our 
approach, as described above. We anticipate that mission driven scene 
understanding will lead to 1) improved autonomous intelligent systems supporting 
Army missions in complex and changing environments and 2) improved course of 
action strategies based on scene understanding incorporating battlefield dynamic 
environments changing in space and time. 
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